Thermo-optical "canard orbits" and excitable limit cycles.
نویسندگان
چکیده
We demonstrate experimentally and theoretically the existence of canard orbits and excitable quasiharmonic limit cycles in the thermo-optical dynamics of semiconductor optical amplifiers. We also observe the phase locking of the noise-induced spikes to the small-amplitude Hopf quasiharmonic oscillations, recently predicted by Makarov, Nekorkin, and Velarde [Phys. Rev. Lett. 86, 3431 (2001)]].
منابع مشابه
Oscillatory amplification of stochastic resonance in excitable systems.
We study systems which combine both oscillatory and excitable properties, and hence intrinsically possess two internal frequencies, responsible for standard spiking and for small amplitude oscillatory limit cycles (Canard orbits). We show that in such a system the effect of stochastic resonance can be amplified by application of an additional high-frequency signal, which is in resonance with th...
متن کاملRegularizations of Two-Fold Bifurcations in Planar Piecewise Smooth Systems Using Blowup
We use blowup to study the regularization of codimension one two-fold singularities in planar piecewise smooth (PWS) dynamical systems. We focus on singular canards, pseudo-equlibria and limit cycles that can occur in the PWS system. Using the regularization of Sotomayor and Teixeira [30], we show rigorously how singular canards can persist and how the bifurcation of pseudo-equilibria is relate...
متن کاملDelay-induced Multistability in a Generic Model for Excitable Dynamics
Motivated by real-world excitable systems such as neuron models and lasers, we consider a paradigmatic model for excitability with a global bifurcation, namely a saddle-node bifurcation on a limit cycle. We study the effect of a time-delayed feedback force in the form of the difference between a system variable at a certain time and at a delayed time. In the absence of delay the only attractor ...
متن کاملCanards of mixed type in a neural burster.
Canards are solutions of slow-fast systems that spend long times near branches of repelling equilibria, periodic orbits, or higher-dimensional invariant sets. Here, we report on the observation of a new type of canard orbit, labeled a canard of mixed type. This canard orbit is a hybrid of the classical limit cycle canards, which spend long times near attracting and repelling branches of equilib...
متن کاملAn elementary model of torus canards.
We study the recently observed phenomena of torus canards. These are a higher-dimensional generalization of the classical canard orbits familiar from planar systems and arise in fast-slow systems of ordinary differential equations in which the fast subsystem contains a saddle-node bifurcation of limit cycles. Torus canards are trajectories that pass near the saddle-node and subsequently spend l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 92 7 شماره
صفحات -
تاریخ انتشار 2004